extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3xC30).1C22 = C3xD5xDic3 | φ: C22/C1 → C22 ⊆ Aut C3xC30 | 60 | 4 | (C3xC30).1C2^2 | 360,58 |
(C3xC30).2C22 = C3xS3xDic5 | φ: C22/C1 → C22 ⊆ Aut C3xC30 | 120 | 4 | (C3xC30).2C2^2 | 360,59 |
(C3xC30).3C22 = C3xD30.C2 | φ: C22/C1 → C22 ⊆ Aut C3xC30 | 120 | 4 | (C3xC30).3C2^2 | 360,60 |
(C3xC30).4C22 = C3xC15:D4 | φ: C22/C1 → C22 ⊆ Aut C3xC30 | 60 | 4 | (C3xC30).4C2^2 | 360,61 |
(C3xC30).5C22 = C3xC3:D20 | φ: C22/C1 → C22 ⊆ Aut C3xC30 | 60 | 4 | (C3xC30).5C2^2 | 360,62 |
(C3xC30).6C22 = C3xC5:D12 | φ: C22/C1 → C22 ⊆ Aut C3xC30 | 120 | 4 | (C3xC30).6C2^2 | 360,63 |
(C3xC30).7C22 = C3xC15:Q8 | φ: C22/C1 → C22 ⊆ Aut C3xC30 | 120 | 4 | (C3xC30).7C2^2 | 360,64 |
(C3xC30).8C22 = D5xC3:Dic3 | φ: C22/C1 → C22 ⊆ Aut C3xC30 | 180 | | (C3xC30).8C2^2 | 360,65 |
(C3xC30).9C22 = C3:S3xDic5 | φ: C22/C1 → C22 ⊆ Aut C3xC30 | 180 | | (C3xC30).9C2^2 | 360,66 |
(C3xC30).10C22 = C30.D6 | φ: C22/C1 → C22 ⊆ Aut C3xC30 | 180 | | (C3xC30).10C2^2 | 360,67 |
(C3xC30).11C22 = C30.12D6 | φ: C22/C1 → C22 ⊆ Aut C3xC30 | 180 | | (C3xC30).11C2^2 | 360,68 |
(C3xC30).12C22 = C32:7D20 | φ: C22/C1 → C22 ⊆ Aut C3xC30 | 180 | | (C3xC30).12C2^2 | 360,69 |
(C3xC30).13C22 = C15:D12 | φ: C22/C1 → C22 ⊆ Aut C3xC30 | 180 | | (C3xC30).13C2^2 | 360,70 |
(C3xC30).14C22 = C15:Dic6 | φ: C22/C1 → C22 ⊆ Aut C3xC30 | 360 | | (C3xC30).14C2^2 | 360,71 |
(C3xC30).15C22 = Dic3xD15 | φ: C22/C1 → C22 ⊆ Aut C3xC30 | 120 | 4- | (C3xC30).15C2^2 | 360,77 |
(C3xC30).16C22 = S3xDic15 | φ: C22/C1 → C22 ⊆ Aut C3xC30 | 120 | 4- | (C3xC30).16C2^2 | 360,78 |
(C3xC30).17C22 = C6.D30 | φ: C22/C1 → C22 ⊆ Aut C3xC30 | 60 | 4+ | (C3xC30).17C2^2 | 360,79 |
(C3xC30).18C22 = D6:D15 | φ: C22/C1 → C22 ⊆ Aut C3xC30 | 120 | 4- | (C3xC30).18C2^2 | 360,80 |
(C3xC30).19C22 = C3:D60 | φ: C22/C1 → C22 ⊆ Aut C3xC30 | 60 | 4+ | (C3xC30).19C2^2 | 360,81 |
(C3xC30).20C22 = D6:2D15 | φ: C22/C1 → C22 ⊆ Aut C3xC30 | 60 | 4+ | (C3xC30).20C2^2 | 360,82 |
(C3xC30).21C22 = C3:Dic30 | φ: C22/C1 → C22 ⊆ Aut C3xC30 | 120 | 4- | (C3xC30).21C2^2 | 360,83 |
(C3xC30).22C22 = D30.S3 | φ: C22/C1 → C22 ⊆ Aut C3xC30 | 120 | 4 | (C3xC30).22C2^2 | 360,84 |
(C3xC30).23C22 = Dic15:S3 | φ: C22/C1 → C22 ⊆ Aut C3xC30 | 60 | 4 | (C3xC30).23C2^2 | 360,85 |
(C3xC30).24C22 = D30:S3 | φ: C22/C1 → C22 ⊆ Aut C3xC30 | 60 | 4 | (C3xC30).24C2^2 | 360,86 |
(C3xC30).25C22 = C32:3D20 | φ: C22/C1 → C22 ⊆ Aut C3xC30 | 120 | 4 | (C3xC30).25C2^2 | 360,87 |
(C3xC30).26C22 = C32:3Dic10 | φ: C22/C1 → C22 ⊆ Aut C3xC30 | 120 | 4 | (C3xC30).26C2^2 | 360,88 |
(C3xC30).27C22 = C5xS3xDic3 | φ: C22/C1 → C22 ⊆ Aut C3xC30 | 120 | 4 | (C3xC30).27C2^2 | 360,72 |
(C3xC30).28C22 = C5xC6.D6 | φ: C22/C1 → C22 ⊆ Aut C3xC30 | 60 | 4 | (C3xC30).28C2^2 | 360,73 |
(C3xC30).29C22 = C5xD6:S3 | φ: C22/C1 → C22 ⊆ Aut C3xC30 | 120 | 4 | (C3xC30).29C2^2 | 360,74 |
(C3xC30).30C22 = C5xC3:D12 | φ: C22/C1 → C22 ⊆ Aut C3xC30 | 60 | 4 | (C3xC30).30C2^2 | 360,75 |
(C3xC30).31C22 = C5xC32:2Q8 | φ: C22/C1 → C22 ⊆ Aut C3xC30 | 120 | 4 | (C3xC30).31C2^2 | 360,76 |
(C3xC30).32C22 = C12.D15 | φ: C22/C2 → C2 ⊆ Aut C3xC30 | 360 | | (C3xC30).32C2^2 | 360,110 |
(C3xC30).33C22 = C4xC3:D15 | φ: C22/C2 → C2 ⊆ Aut C3xC30 | 180 | | (C3xC30).33C2^2 | 360,111 |
(C3xC30).34C22 = C60:S3 | φ: C22/C2 → C2 ⊆ Aut C3xC30 | 180 | | (C3xC30).34C2^2 | 360,112 |
(C3xC30).35C22 = C2xC3:Dic15 | φ: C22/C2 → C2 ⊆ Aut C3xC30 | 360 | | (C3xC30).35C2^2 | 360,113 |
(C3xC30).36C22 = C62:D5 | φ: C22/C2 → C2 ⊆ Aut C3xC30 | 180 | | (C3xC30).36C2^2 | 360,114 |
(C3xC30).37C22 = C3xDic30 | φ: C22/C2 → C2 ⊆ Aut C3xC30 | 120 | 2 | (C3xC30).37C2^2 | 360,100 |
(C3xC30).38C22 = C12xD15 | φ: C22/C2 → C2 ⊆ Aut C3xC30 | 120 | 2 | (C3xC30).38C2^2 | 360,101 |
(C3xC30).39C22 = C3xD60 | φ: C22/C2 → C2 ⊆ Aut C3xC30 | 120 | 2 | (C3xC30).39C2^2 | 360,102 |
(C3xC30).40C22 = C6xDic15 | φ: C22/C2 → C2 ⊆ Aut C3xC30 | 120 | | (C3xC30).40C2^2 | 360,103 |
(C3xC30).41C22 = C3xC15:7D4 | φ: C22/C2 → C2 ⊆ Aut C3xC30 | 60 | 2 | (C3xC30).41C2^2 | 360,104 |
(C3xC30).42C22 = C32xDic10 | φ: C22/C2 → C2 ⊆ Aut C3xC30 | 360 | | (C3xC30).42C2^2 | 360,90 |
(C3xC30).43C22 = D5xC3xC12 | φ: C22/C2 → C2 ⊆ Aut C3xC30 | 180 | | (C3xC30).43C2^2 | 360,91 |
(C3xC30).44C22 = C32xD20 | φ: C22/C2 → C2 ⊆ Aut C3xC30 | 180 | | (C3xC30).44C2^2 | 360,92 |
(C3xC30).45C22 = C3xC6xDic5 | φ: C22/C2 → C2 ⊆ Aut C3xC30 | 360 | | (C3xC30).45C2^2 | 360,93 |
(C3xC30).46C22 = C32xC5:D4 | φ: C22/C2 → C2 ⊆ Aut C3xC30 | 180 | | (C3xC30).46C2^2 | 360,94 |
(C3xC30).47C22 = C15xDic6 | φ: C22/C2 → C2 ⊆ Aut C3xC30 | 120 | 2 | (C3xC30).47C2^2 | 360,95 |
(C3xC30).48C22 = S3xC60 | φ: C22/C2 → C2 ⊆ Aut C3xC30 | 120 | 2 | (C3xC30).48C2^2 | 360,96 |
(C3xC30).49C22 = C15xD12 | φ: C22/C2 → C2 ⊆ Aut C3xC30 | 120 | 2 | (C3xC30).49C2^2 | 360,97 |
(C3xC30).50C22 = Dic3xC30 | φ: C22/C2 → C2 ⊆ Aut C3xC30 | 120 | | (C3xC30).50C2^2 | 360,98 |
(C3xC30).51C22 = C15xC3:D4 | φ: C22/C2 → C2 ⊆ Aut C3xC30 | 60 | 2 | (C3xC30).51C2^2 | 360,99 |
(C3xC30).52C22 = C5xC32:4Q8 | φ: C22/C2 → C2 ⊆ Aut C3xC30 | 360 | | (C3xC30).52C2^2 | 360,105 |
(C3xC30).53C22 = C3:S3xC20 | φ: C22/C2 → C2 ⊆ Aut C3xC30 | 180 | | (C3xC30).53C2^2 | 360,106 |
(C3xC30).54C22 = C5xC12:S3 | φ: C22/C2 → C2 ⊆ Aut C3xC30 | 180 | | (C3xC30).54C2^2 | 360,107 |
(C3xC30).55C22 = C10xC3:Dic3 | φ: C22/C2 → C2 ⊆ Aut C3xC30 | 360 | | (C3xC30).55C2^2 | 360,108 |
(C3xC30).56C22 = C5xC32:7D4 | φ: C22/C2 → C2 ⊆ Aut C3xC30 | 180 | | (C3xC30).56C2^2 | 360,109 |
(C3xC30).57C22 = D4xC3xC15 | central extension (φ=1) | 180 | | (C3xC30).57C2^2 | 360,116 |
(C3xC30).58C22 = Q8xC3xC15 | central extension (φ=1) | 360 | | (C3xC30).58C2^2 | 360,117 |